CO₂ transportation Key safety challenges

Risk management & assessment for business

AGENDA

X

Y

- 1. Introduction
- 2. General CO₂ Introduction
- 3. Key CO₂ Challenges
 - A. Toxicity
 - B. CO₂ modelling
 - Concentration
 - Temperature
 - C. Emergency Response philosophy

Speaker

Paul van Rossum

Co-founder TCI / Technical Safety Consultant MsC Applied Physics

An energetic, positive, out-of-the-box thinker who loves to solve challenging problems.

Experience and competencies

- >15 years experience as TSE
- CCS risk management
- Hydrogen risk management
- Provision of a wide range of consequence modelling and quantitative safety studies (inc. CFD)
- HAZID/HAZOP/LOPA/Bowtie Facilitator
- Reliability, Availability and Maintainability Studies
- Experienced programmer (autonomous robot football)

About TCI Risk Management

WE GOT THIS

X

Y

Safety Engineering and Risk Management Consultancy

- Consequence and Physical Effects Modelling (incl. CFD)
- Risk Reduction & ALARP
- HSSE / Safety Cases and supporting studies
- HSE Management Systems Development and Implementation
- Facilitation of HAZID and HAZOP workshops
- Functional Safety (FSA, LOPA, SIL)
- BowTie Barrier Risk Management;
- Identification of Safety & Environmental Critical Elements and Safety & Environmental Critical Tasks
- Optimisation of Fire and Gas Detection System Layouts
- Reliability, Availability, Maintainability (RAM)

www.tci-rm.com

CO₂ properties

O=C=O

- Colourless
- Odourless

Y

- Not Flammable
- Soluble in water
- Heavier than air (MW=44 vs ~29)
 - Under atmospheric pressure, gas or solid (not liquid)
 - CO₂ transported offshore in Supercritical phase
 - Forms a solid "dry ice" at -78°C
 - CO₂ is a Greenhouse gas

CO_2 sources

X

Y

- Naturally occurring
- Man-made emissions
- Carbon Capture & Storage

CREEDLA

CO₂ in atmosphere

How much CO_2 is there in the atmosphere?

PROXY (INDIRECT) MEASUREMENTS

Thousands of years before today

X

CO₂ in human body

Exhaled air ~4% CO_2 , 100 x inhaled

X

Y

2

- Many decisions in design & ER based on effect on people
- Various views exist on 'tolerable' levels of x CO₂ exposure
- Too conservative assumptions may lead to overdesign

CO₂ challenges - CO₂ toxicity

Examples:

х

Y

Dutch regulator (RIVM) summary of CO₂ hazards: 20220608-carbon dioxide-INHOUDELIJK VASTGESTELD | RIVM

Concentration	Concentration	Concentration	Remarks	
CO ₂ (ppm)	CO ₂ (Vol%)	$CO_2 (mg/m^3)$		
45000	4.5	823500	Reduced concentration capability	
			after more than 8 hours	
			exposure, adaptation possible	
55000	5.5	100650	Breathing difficulty, headache	
			and increased heart rate after 1	
			hour	
65000	6.5	118950	Dizziness, and confusion after	
			15 minutes exposure	
70000	7.0	128100	Anxiety caused by breathing	
			difficulty effects becoming	
			severe after 6 minutes exposure	
100 000	10	183000	Approaches threshold of	
			unconsciousness in 30 minutes	
120 000	12	219600	Threshold of unconsciousness	
			reached in 5 minutes	
150 000	15	274500	Exposure limit 1 minutes	
200 000	20	366000	Unconsciousness occurs	
			in less than 1 minute	

NASA Technical Memorandum 103832: Individuals have tolerated levels of up to 5% for 'days to weeks'

Summary

Physiologic responses to elevated CO_2 levels are dependent on the degree and duration of exposure. Exposure to CO_2 levels above 5% produces marked symptomology and cannot be tolerated for extended periods of time. Carbon dioxide levels between 3-5% produce symptoms of dyspnea, but individuals have tolerated these exposures for days to weeks. Exposure to CO_2 levels of 2-3% can be tolerated for weeks to months. Concentrations of CO_2 below 2% can be tolerated indefinitely.

'Carbon dioxide tolerability and toxicity in rat and man: A translational study' (Frontiers in Toxicology)

	CO2 exposure level										
		6 %	5 % 7.5 %		9 %			10 %	12 %		
Intended duration, minutes	10	30	60	10	30	60	10	30	60	10	10
Number participants	6	6	6	6	6	6	6	6	6	10	2
Completed regardless intended duration, No. (%)	18 (100)	12 (100)	6 (100)	18 (100)	12 (100)	6 (100)	12 (66.7)	4 (33.3)	1 (16.7)	3 (30)	0 (0)
Actual exposure duration, mean (SD)	10 (0)	30 (0)	60 (0)	10 (0)	30 (0)	60 (0)	10 (0)	15.7 (12.2)	22.2 (21.5)	7.1 (2.6)	6.5 (2.1)

х

CO₂ toxicity - probit

Table of SLOT & SLOD values for CO ₂ [IOGP 434-14	.4]
--	-----

Inhalation exposure time	SLOT: 1-5%	Fatalities	SLOD: 50% Fatalities		
	CO ₂ Concent	ration in air*	CO ₂ Concentration in air*		
	%	ppm	%	ppm	
60 min	6.3%	63 000 ppm	8.4%	84 000 ppm	
30 min	6.9%	69 000 ppm	9.2%	92 000 ppm	
20 min	7.2%	72 000 ppm	9.6%	96 000 ppm	
10 min	7.9%	79 000 ppm	10.5%	105 000 ppm	
5 min	8.6%	86 000 ppm	11.5%	115 000 ppm	
1 min	10.5%	105 000 ppm	14%	140 000 ppm	

There are three different 'probit' functions in the published/online literature:

1. Energy Institute:

X

Y

- 2. RIVM (referencing UK-HSE):
- 3. IOGP Report 434-14:

 $Y = -89.8 + In((C^8) * t)$

- $Y = -90.8 + 1.01 * ln((C^8) * t)$
- $Y = -72.44 + 0.817 * In((C^8)*t)$

Y is then related to lethality by a standard formula: Lethality = $\left(-erf\left(\frac{5-Y}{\sqrt{2}}\right)+1\right)/2$

X

CO₂ toxicity - conclusions

- We have evolved as humans to be able to easily withstand $\rm CO_2$ concentrations up to 5%
- Guidance to date has been based on conservative assumptions in the face of limited scientific data
- Recent Human Vulnerability study provides clear evidence of subjects voluntarily withstanding CO₂ levels previously thought to be life-threatening
- As our understanding has developed, there is scope for reviewing human vulnerability / fatality functions

CO₂ challenges - CO₂ modelling

- Many decisions in design & ER based on effect on people & asset
- Large uncertainty in modelling
 - Validation on limited data
 - Scalability

X

Y

 Too conservative assumptions may lead to overdesign

CO₂ modelling

- Many "sub-models" available
 - Dense phase is either gas or liquid
 - "Gas Blanket" dispersion model (upwind)
 - Crater for underground pipeline
 - Underwater approach
 - Detailed knowlegde required for interpretation of results

Cryogenic impact of CO₂

• Joule-Thomson (JT) effect

Y

- Describes the temperature change of a gas or liquid when it expands through an orifice
- CO₂ has a strong JT effect causing very cold temperatures
- Released from dense & liquid phase -78°C + solid formation

Cryogenic impact of CO₂

Cryogenic impact of CO₂

Cryogenic Risk Assessment

- Quantity the frequency of exceeding brittle fracture criteria for critical targets
- Temperature Rise models (e.g. in FRED) are established
- Cool down model uses same principles
- Embrittlement time based upon
 - Thickness receiving material
 - Plume temperature & width
 - CO₂ jet velocity

Y

- Exposed to gas or solid
- Important input to design

CO₂ Challenges - ER

- ER Offshore
 - Typically based on O&G standards
 - Less familiar with heavy toxic gasses
 - Requires new philosophies
- ER Onshore

X

Y

Similar to other heavy toxic gasses

ER Offshore

Which part of ER would you do different from traditional O&G?

- Detection
- Isolation / Blowdown
- Escape routes
- Muster area
- Evacuation
- PPE

X

Y

Ship Collision

- Noise, CO₂
- Yes & No
- Visibility
- Prevent impairment
- Going up
- Visibility, Cold
- Same as O&G

X

ER Onshore

Which part of ER would you do **different** from traditional O&G&C?

- Detection
- Isolation / Blowdown Yes & No
- Muster area
- PPE
- BRA

- Noise, CO₂
- Upwind dispersion
- Visibility, Cold
- Like heavy gas
- Cold dense plumes, slump into low areas
- Engines may stall

х

Y

Poor visibility may impair escape

Summary

X

- CO₂ is part of our daily life
 - Remember 0.04% versus 4% ☺
- Current probit can be considered conservative
- Consider the risk of cryogenic escalation
- Sensitivities of existing software models for CO₂
- Update of ER philosophy required for CO₂
- And many others which cannot be covered in half an hour

DJ GIG LOG: Dancing on the Clouds + Sparklers | How to have a Perfec

Have a safe and secure day! THANK YOU FOR YOUR ATTENTION

- High wind speed
 - Plume trajectory bent over by wind
 - No re-entrainment, no upwind spreading
 - Suitably handled by UDM
- Low wind speed
 - Low impact on trajectory, results in 'fountain' behaviour
 - Circular spreading at ground level
 - Not well handled by standard UDM

'Gas Blanket' model

- Requires the initial jet-based plume to touch down at > 45° impact angle (configurable)
- Represents the release as an instantaneous release
- Fed by a time-varying crater source
- Eventually the instantaneous cloud drifts and uncovers the crater
- Any remaining source treated as normal vertical jet

Gas blanket modelling

