

dé consultants voor de chemische industrie

Prior use assessment

By :Pro6comFor :PS Congress DordrechtDate :May 18th , 2022

Marcel de Winter marcel.dewinter@pro6com.nl

Vision

Yes No

Creating a better world by making processes safer and more efficient

Mission

We create value for our customers by making their invisible **process safety risks** and **energy or production losses** visible. This allows targeted actions to be taken to reduce these risks and optimize the plant performance

dé consultants voor de chemische industrie

Prior in use assessment

- Safety Lifecycle
- Design
- Proven in use Assessment
- Examples
- Conclusion / discussion

Safety Lifecycle

- PHA
- Design
- Installation
- Operation/maintenance
- MOC
- Decommissioning

- Selecting parts
 - Proven in use
 - Certified Data
 - Prior use

- Proven in use
 - Data provided by manufacturer
 - Generic information
 - Not according plant situation (service, degradation mechanism, etc)
 - Not officially named in IEC 61511
 - Can be used together with plant information -> prior use

- Certified Data
 - Clear description of failure data
 - Provided installation and safety manual
 - Suitable for both type A and B components
 - Cover all SIL levels
 - No historical data needs to be used to verify component
 - Historical data can be used for validation the application

- Prior use
 - Needs evidence according IEC 61511
 - Using historical data out of the field
 - Suitable for type A and some B components
 - Cover not all SIL levels
 - Used when no certified data is available

- Required evidence according IEC 61511
 - Consideration of the manufacturer's quality, management and configuration management systems
 - Adequate identification and specification of the devices
 - Demonstration of the performance of the devices in similar operating environments
 - The volume of the operating experience
 - Monitoring device performance

- Adequate identification and specification of the devices
 - Proof of manufacturer quality management
 - Availability of operational manual
 - Suitable for both type A and B components
 - For type B also a software assessment is required
 - For higher SIL levels, more evidence is required

- Volume of the operating experience
 - The reliability data uncertainties can be evaluated according to:
 Statistical approaches
 - o Engineering judgement techniques (generic data)
 - o Undertaking specific techniques (like FME(D)A)
 - The amount of field feedback
 - o Less data results in higher uncertainty
 - o Usage of statistical approach
 - o Observation time is only for similar components (size, service, model number

- Use of probabilistic distribution
 - χ^2 distribution: From a sample of n failures observed over a cumulated observation time T the confidence upper bound can be calculated by using the χ^2 function: $\lambda_{0.7} = \frac{1}{2T} \chi^2_{0.3,2(n+1)}$
 - Can be used with small size of data
 - Confidence level 70%
 - T = total observation time; n = observed failures

- Observation time (T)
 - Total time (in years) where a component is in service
 - Same model number
 - Same service
 - Same environmental impact
 - Same degradation
 - T ≠ number of component * service years
 - Replacement
 - Repair
 - MoC

- Use of probabilistic distribution
 - χ^2 vs normal distribution
 - Confidence level 70%

- χ^2 is more conservative and required by IEC 61511
- χ^2 could be 'less required' at large observation time

- χ^2 distribution
 - Reliability (FIT) against
 observation time
 - Different observed events
 - Shows importance of available data

χ^2 in relation amount of events

Prior Use Assessment - examples

• Simple SIF configuration

- Sensor, Logic Solver and Actuator does have valid SIL certificates
 - Sensor: PFD_{avg} = 2.85 x 10⁻⁴
 - Logic Solver: $PFD_{avg} = 4.82 \times 10^{-4}$
 - Actuator: PFD_{avg} = 5.30 × 10⁻³
- Valve doesn't have a valid SIL certificate

- Simple Safety loop
 - High level in tank closes tank-valve
 - All components, except valve, contain necessary certification documents
- Service time plant 18 years
- Total # of valves in service: 90
 - In critical application: 30
 - In process application: 60
- Combines operational service: 500 year
 - Valves in similar service clean
 - Valves within same model number

Prior in Use Assessment - examples

- Example 1
 - Fictitious vs probabilistic (χ^2) approach
 - Fixed set of results
- Example 2
 - χ^2 approach
 - Lack of maintenance data
- Example 3
 - χ^2 approach
 - Relation between reliability and # events

Example 1 - results valve

• Out of maintenance report, the following data is acquired

Tag #	date	service	failure	Event ¹⁾	SD	SU	DD	DU	Maintenance	MTTR
XV-003	25-01-99	Clean	Packing leak	Fail safe	1				Packing replacement	45 min
XV-034	04-10-02	Clean	Build up material	Poss. danger			1		Cleaning	1 hour
XV-010	18-08-02	Clean	Shaft damage	Fail to danger				1	Valve replacement	12 hours
XV-150	06-02-09	Clean	Packing leak	Fail safe	1				Packing replacement	1,5 uur
XV-068	19-04-15	Clean	Valve not closed 100%	Poss. Danger			1		Valve replacement	16 hours
XV-099	31-10-19	Clean	Build up material	Poss. Danger			1		Cleaning	30 min

- Proof-test interval (T1) = 8760 hours (1 year)
- MTTR = 5.3 hours (average)

¹⁾ In relation to functional safety, not process safety

Example 1 – Fictitious example

- Failure rate [in FIT(Failure in Time)]:
 - **λ** = n / T
 - λ_{DU} = 228 FIT; λ_{DD} = 685 FIT; λ_{SD} = 457 FIT; λ_{D} = 913 FIT
- Calculate PFD_{avg}
 - PFDavg = 5.36 x 10⁻⁴

Example 1 – probabilistic example

- $\chi^2[\alpha/2, 2n+2]; \alpha/2 = 0.3$ (70% confidense, n = amount of events)
- $\lambda = \chi^2/(2 \times T)$
- Failure rate:
 - λ_{DU} = 556 FIT; λ_{DD} = 1090 FIT; λ_{SD} = 825 FIT λ_{D} = 856 FIT
- Calculate PFD_{avg}
 - PFD_{avg} = 2.46 × 10⁻³

- Results prior use calculation:
 - Fictitious approach (prior use): PFD_{avg} = 5.36 x 10⁻⁴
 - Probabilistic approach (prior use): PFD_{avg} = 2.46 x 10⁻³
- Total loop results:
 - Fictitious approach: PFD_{avg} = 6.60 x 10⁻³ -> RRF 151
 - Probabilistic approach: PFD_{avg} = 8.53 × 10⁻³ -> RRF 117

Example 2 - results valve

• Out of maintenance report the following data is acquired

Tag #	date	service	failure	Event	SD	SU	DD	DU	Maintenance	MTTR
XV-003	25-01-99	Clean	Packing leak	Fail safe	1				Packing replacement	45 min
XV-034	04-10-02	Clean	Build up material	Poss. danger			1		Cleaning	1 hour
XV-010	18-08-02	Clean	Shaft damage	Fail to danger				1	Valve replacement	12 hours
XV-150	06-02-09	Clean	Packing leak	Fail safe	1				Packing replacement	1,5 uur
XV-068	19-04-15	Clean	Valve not closed 100%	Poss. Danger			1		Valve replacement	16 hours
XV-099	31-10-19	Clean	Build up material	Poss. Danger			1		Cleaning	30 min

- Proof-test interval (T1) = 8760 hours (1 year)
- MTTR = 5.3 hours

Example 2 - results valve

• Out of maintenance report the following data is acquired

Tag #	date	service	failure	Event	SD	SU	DD	DU	Maintenance	MTTR
XV-003	25-01-99	Clean	Packing leak	Fail safe				1	Packing replacement	45 min
XV-034	04-10-02	Clean	Build up material	Poss. danger				1	Cleaning	1 hour
XV-010	18-08-02	Clean	Shaft damage	Fail to danger				1	Valve replacement	12 hours
XV-150	06-02-09	Clean	Packing leak	Fail safe				1	Packing replacement	1,5 uur
XV-068	19-04-15	Clean	Valve not closed 100%	Poss. Danger				1	Valve replacement	16 hours
XV-099	31-10-19	Clean	Build up material	Poss. Danger				1	Cleaning	30 min

- Prooftest interval (T1) = 8760 hours (1 year)
- MTTR = 5.3 hours
- Lack of maintenance data all events considered as dangerous failure

- $\chi^2[\alpha/2, 2n+2]$; (70% confidence, n = number of events = 6)
- $\lambda = \chi^2/(2 \times T)$
- Failure rate:
 - λ_{DU} = 185 FIT
- Calculate $\mathsf{PFD}_{\mathsf{avg}}$ for SIF
 - PFD_{avg} = 1.42 × 10⁻²
 - RRF = 71

- Same data as previous examples
- Considered only λ_{DU} values
- Increased number of found DU events
- Data based on χ^2 distribution

Reliability related to # events

Prior in Use Assessment – summary

- Volume of the operating experience:
 - High observation time -> decrease of FIT
 - Observed events will then contribute less
- Monitoring device performance
 - Better monitoring and documentation -> RRF increases
 - Example 71 -> 117
- Gives a good overview regarding reliability related to observed events

Prior Use Assessment – Discussion

Can 'certified data' being replaced by 'prior use' data ?

	Certified data	Prior use
Used within green field		1
Used within brown field		
Predictive	1	
Realistic	1	
Cover all SIFs		1
Clear failure data		1
Clear operational data	•	1 · · · · · · · · · · · · · · · · · · ·
Use of historical data		

Prior Use Assessment – Discussion

• Can 'certified data' fully being replaced by 'prior in use' data:

- But....
 - In some cases possible
 - Monitoring device performance during operational phase
 - Predictive to future reliability

Questions

There's More Than One Terrific Reason to Be Safe at Work

THEY NEED US

Back-up slides

Example 1 – fictitious example

- Failure rate:
 - $\lambda_{DU} = 1 / 500 = 2.00 \times 10^{-3}$ per year = 2.28 x 10⁻⁷ per hour = 228 FIT
 - $\lambda_{DD} = 3/500 = 6.00 \times 10^{-3}$ per year = 6.85 x 10⁻⁷ per hour = 685 FIT
 - $\lambda_{SD} = 2 / 500 = 4.00 \times 10^{-3}$ per year = 4.57 x 10⁻⁷ per hour = 457 FIT
 - $\lambda_{D} = \lambda_{DU} + \lambda_{DD} = 228 + 685 = 913$ FIT
- Calculate t_{CE} $t_{ce} = \frac{\lambda_{DU}}{\lambda_D} x \left(\frac{T_1}{2} + MTTR\right) + \left(\frac{\lambda_{DD}}{\lambda_D} x MTTR\right)$
 - $t_{CE} = (2.28 \times 10^{-7} / 9.13 \times 10^{-7}) * (8760/2 + 5.3) + (6.85 \times 10^{-7} / 9.13 \times 10^{-7} * 5.3)$ = 1.100 + 3.98 = 1104 hours
- Calculate PFD_{avg} $PFD_{avg} = [(\lambda_{DU}) + (\lambda_{DD})]t_{ce}$
 - PFDavg = (2.28 x 10⁻⁷ + 6.85 x 10⁻⁷) * 1104 = 5.36 x 10⁻⁴

Example 1 – probabilistic example

- $\chi^2[\alpha/2, 2n+2]$; $\alpha/2 = 0.3$ (70% confidense, n = amount of events)
- Failure rate:
 - $\lambda_{DU} = \chi^2 / (2 \times T) = 4.88 / (2 * 500) = 4.88 \times 10^{-3}$ per year = 5.56 × 10⁻⁷ per hour
 - $\lambda_{DD} = \chi^2 / (2 \times T) = 9.52 / (2 \times 500) = 9.52 \times 10^{-3} \text{ per year} = 1.09 \times 10^{-6} \text{ per hour}$
 - $\lambda_{SD} = \chi^2 / (2 \times T) = 7.23 / (2 \times 500) = 7.23 \times 10^{-3} \text{ per year} = 8.25 \times 10^{-7} \text{ per hour}$
 - $\lambda_{\rm D} = \lambda_{\rm DU} + \lambda_{\rm DD} = 2.90 \times 10^{-7} + 5.66 \times 10^{-7} = 8.56 \times 10^{-7}$
- Calculate t_{CE} $t_{ce} = \frac{\lambda_{DU}}{\lambda_D} x \left(\frac{T_1}{2} + MTTR\right) + \left(\frac{\lambda_{DD}}{\lambda_D} x MTTR\right)$
 - $t_{CE} = (5.56 \times 10^{-7} / 1.09 \times 10^{-6}) * (8760/2 + 5.3) + (8.25 \times 10^{-7} / 1.09 \times 10^{-6} * 5.3)$ = 1490 + 3.50 = 1494 hours
- Calculate PFD_{avg} $PFD_{avg} = [(\lambda_{DU}) + (\lambda_{DD})] t_{ce}$
 - $PFD_{avg} = (5.56 \times 10^{-7} + 1.09 \times 10^{-6})^* 1494 = 2.46 \times 10^{-3}$

Example 2 – probabilistic example

- $\chi^2[\alpha/2, 2n+2]$; $\alpha/2 = 0.3$ (70% confidense, n = amount of events)
- Failure rate:
 - Amount of events (n) = 6
 - $\lambda_{DU} = \chi^2 / (2 \times T) = 4.88 / (2 \times 500) = 1.62 \times 10^{-2} \text{ per year} = 1.85 \times 10^{-6} \text{ per hour}$
- Calculate PFD_{avg} for valve
 - PFDavg = 8.11 x 10⁻³
- Calculate PFD_{avg} for SIF
 - PFD_{avg} = 2.85 × 10⁻⁴ + 4.82 × 10⁻⁴ + 5.30 × 10⁻³ + 8.11 × 10⁻³
 - = 1.42 X 10⁻²
 - RRF = 71

