Nozzle positioning study to determine the optimal arrangement of water deluge systems in crowded petrochemical units

Background

Julia Di Domenico Pinto

Chemical Engineer

- Graduated in UFRJ (Brazil)
- Master in Chemical Engineering: Quantitative Risk Analysis
- Post graduation in Occupational HSE
- Professional Doctorate in Process and Product Design
- ▶ HSE engineer for 7 years.
- Process engineer for around 1,5 years.

Julia Di Domenico Pinto

▶ HSE designs for Offshore and Onshore facilities.

Table of Content

Introduction

- Deluge System
- Nozzle Positioning Study
- Study Case: Revamp of Pressure Vessel
 - Process data
 - Methodology
 - Calculations
- Results
- Conclusion

- Chemical/Petrochemical and the Oil & Gas industry handle large quantity of hazardous substances
 - Prone to Fire & Explosion
- Main consequences:
 - Structures, human life and environment
 - Domino effect

- Deluge System
 - Designed to provide
 - Fire control
 - Extinguishment
 - Avoid fire escalation
- Act when a fire is detected/visualized
 - Release water by means of special types of **nozzles**

Reference: Intellisys Fire Security Systems LLP. HVWS / MVWS System.

Automatic Deluge System

Nozzle Positioning Study

Nozzle Positioning Study

Nozzle Positioning Study

- 3D analysis is done around the equipment considering:
 - geometry and dimensions of the equipment;
 - all the obstacles in the surroundings ;
 - different types of spray nozzles;
 - different piping configurations.

Study case

Study Case

REVAMP (change in service)

- Pressured vessel V-001
- Flammable
- Extreme P and T operating conditions
- Located in a very crowded area

Equipment	V-001
Service	C1-C5
Operating Temperature (ºC)	50
Pressure (barg)	155
Mixture Flash Point (^o C)	-60
Length (m)	17
Diameter (m)	5.8

Methodology

Calculate the surface area of the vessel

$$S = \pi DL + 2\pi \left(\frac{D}{2}\right)^2$$
 S = 362,6 m²

Minimum required flow rate to protect the vessel
From NFPA 15, min rate = 10,2 (L/min)/m²

$$Q_{min} = 362,6 \times 10,2 = 3698,6 L/\min = 222 \frac{m3}{h}$$

Calculations - 3D Study

Select the appropriate nozzle based on the 3D analysis, spacing, equipment geometry and dimensions

Calculations - 3D Study

- MV-10
 - Too small •
- 3 rings
 - Too many

MAJOR ISSUES

- Site obstacles
- Cones are not overlapping
- Too many nozzles
- Empty spots

Calculations - 3D Study

Alternative after 3D analysis

- New piping configuration
- Nozzle angle towards the equipment is important

200

1333

Calculations

Define the piping route from the deluge valve until the vessel

XV-20200

Hydraulic balance

Results

Minimum requirements:	Nozzle positioning study	
Min P 1,4 barg (NFPA 15)	Hydraulics	260 m ³ /h
Min. flow 222 m ³ /h	No. nozzles	40
Min. pressure drop	Туре	MV-46, 110°
	DV Pressure	5,9 bar

Examples

Examples of nozzle positioning study

Loading/Unloading

Compressor house

Conclusions

Conclusion

FLUOR

HA20190191-001.pptx

References

- Intellisys Fire Security Systems LLP. HVWS / MVWS System. Available in <u>http://intellisys-fire-security.com/HVWS-MVWS-system.html</u>. Accessed in: 28 jan. 2019.
- Kidde Fire Systems. Spray Nozzles of medium velocity (MV). Available in: < https://kidde-fenwal.com/Public/Kidde>. Accessed in 15 jan. 2019.
- NFPA 15. Standard for Water Spray Fixed Systems for Fire Protection, 2017
- ▶ NFPA 30. Flammable and Combustible Liquids Code, 2018
- SNP. The Spray Nozzle People. Available in: <<u>http://www.spray-nozzle.co.uk/spray-nozzles</u>>. Accessed in 20 jan. 2019.
- Viking Deluge System. Technical Manual for Operation Maintenance, and Troubleshooting. June, 2009.

Questions?

Back-up

- Fire detection system
 - allow for early response
- Various types
 - smoke, heat, ultraviolet (UV) or infrared (IR) detection
- Activated
 - Hydraulic, pneumatic, electric, manual release system or any combination

- Water spray nozzles
 - break apart a fluid flow into a spray pattern
 - can handle low, medium or high velocity

Veejet Medium Velocity