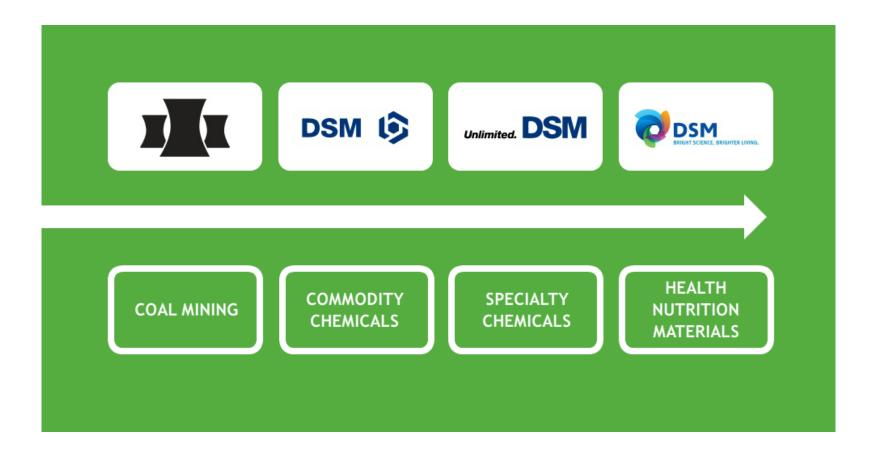


Life Time Extension


Managing mechanical integrity of aging equipment

Jacko Aerts DSM Operations & Responsible Care

Process Safety Conference, Dordrecht, 30 May 2018

Transformations of DSM

Asset Management developments

Before

- One huge central site (Geleen) + "satellites"
- Centralized engineering + maintenance
- One DSM engineering standard
- Comparable asset base → common expertise
- One culture one language (Dutch)

Nowadays

- Global, >100 sites, most small
- Asset diversity
- Local engineering + maintenance
- Compliance to many different standards (GMP, etc.)
- Different engineering standards through acquisitions
- Cultural diversity One DSM company language (English)

Asset Management challenge

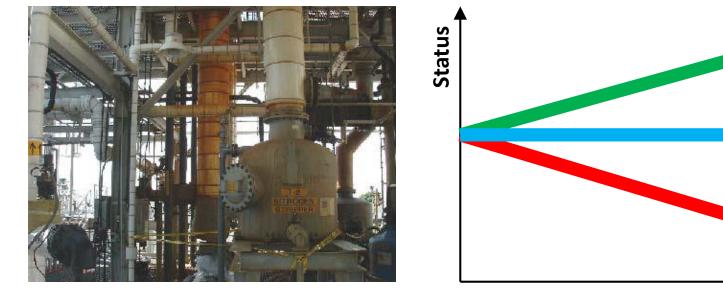
Realize value today

- Integrity and compliance
- SHE
- Asset Utilization
- Costs
- Energy

Realize value tomorrow

- Condition of the organization → competence plans
- Condition of the assets \rightarrow

LTE


How old is this air filter?

Is it just old, or is it aged?

"Ageing is not about how old your equipment is: It's about what you know about its condition, and how that's changing over time" From: Plant Ageing RR509 HSE 2008

Years

Harvest

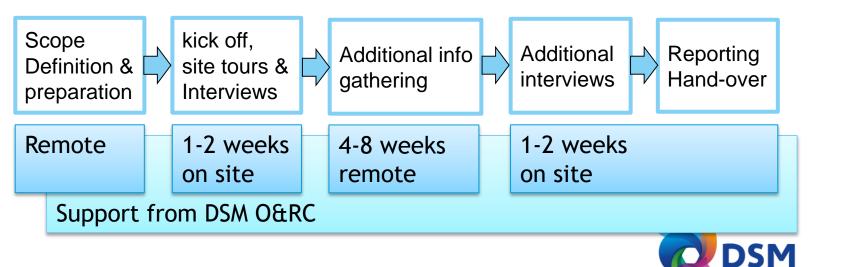
Improve

LTE

Age of this plant is (only) **5!** years

DSM LTE - Background

- Aging plants, beyond design lifetime
- Acquired plants, unknown integrity status
- Need for long term sustainable, robust, reliable operation
- Top down pressure: "NO SURPRISES"
- Missed opportunities for improvement
- Move from project "wish list" to structured 10y CAPEX program
- DSM LTE approach developed in line with outcome 'Vitale' project.


Vitale

Joint Industry Project in NL aimed at asset management of ageing equipment

Execution process flow LTE study

- Goal is 10 more years operation "as is" (no debottlenecking, no harvest), in a safe, reliable and robust way.
- Assessment on equipment level: status ("why") → action ("what") → year (priority) → cost (guestimate)
- LTE represents the "Technical need of the plant"; no restrictions regarding budget or people are considered.
- LTE actions are on top of normal maintenance
- Next to off-site support ("cold eye view") from DSM O&RC and/or BG, having experienced site people available for LTE interviews is key.

DSM LTE scope

In Scope

- Future integrity
- Spare parts availability
- Knowledge availability
- Reliability/ Robustness
- Repair $\leftarrow \rightarrow$ replace
- Compliance/LTO

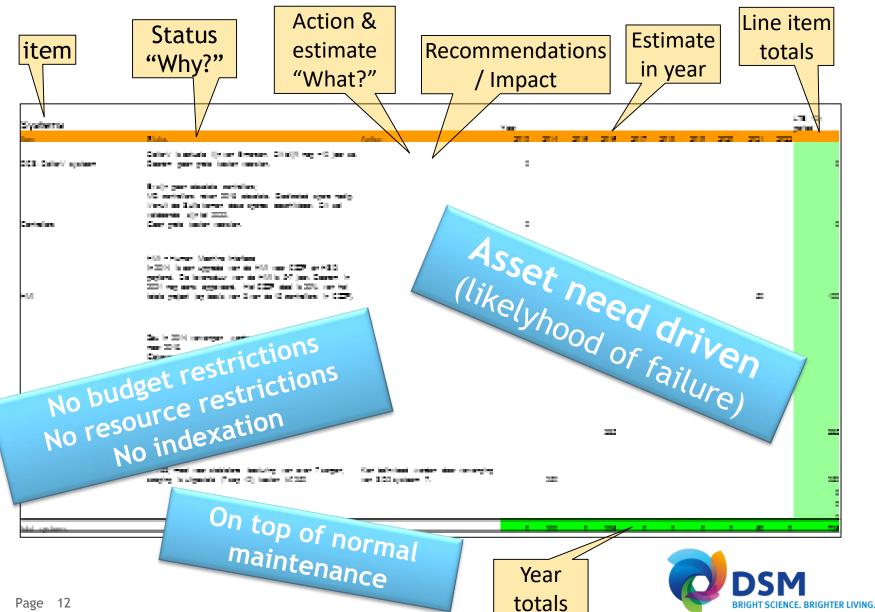
Out of scope

- Normal maintenance
- Debottlenecking/ improvement projects
- Engineering and detailed costing
- Operational cost savings
- Office ICT

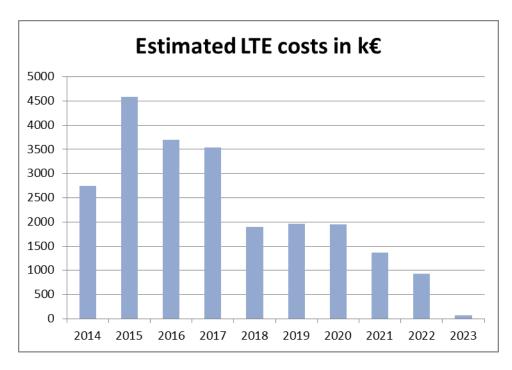
Spare parts / knowledge still available?

LTE covers all disciplines

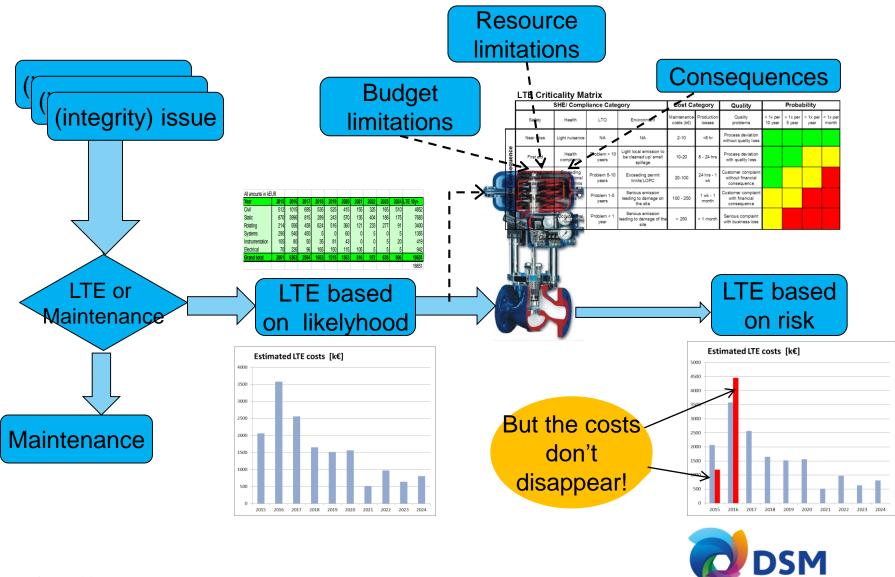
Static	Piping, vessels, heat exchangers, etc.
Rotating	Pumps, centrifuges, compressors, etc.
Electrical	Transformers, switchgear, cables, E-motors, etc.
Instrumentation	Flow, pressure, MSP's, etc.
Control systems	DCS, PLC's, etc.
Civil	Buildings, sewers, fence, etc.



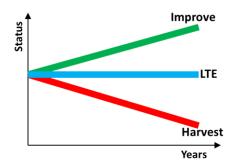
Tankfarm, piperacks, roads, grounds, ponds



DSM LTE Reporting


DSM LTE Costs

Year	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	LTE 10y+
Civil	468	644	800	728	338	293	256	72	72	72	3740
Static	1388	650	2217	2405	1190	325	371	0	858	0	9403
Rotating	468	124	91	0	0	0	0	0	0	0	683
Systems	273	228	228	65	65	1300	1300	1300	0	0	4758
Instrumentation	52	176	91	150	72	0	0	0	0	0	540
Electrical	91	2769	267	195	234	52	26	0	0	0	3634
Grand total	2740	4589	3692	3543	1898	1970	1953	1372	930	72	22757



DSM LTE : from Issue to Action

ENCE. BRIGHTER LIVING.

DSM LTE: Added value for maintaining mechanical integrity

- Known CAPEX investments to secure future operations
- Status of equipment known
- Support strategic investment decisions
- Prevention of nasty surprises / SHE incidents

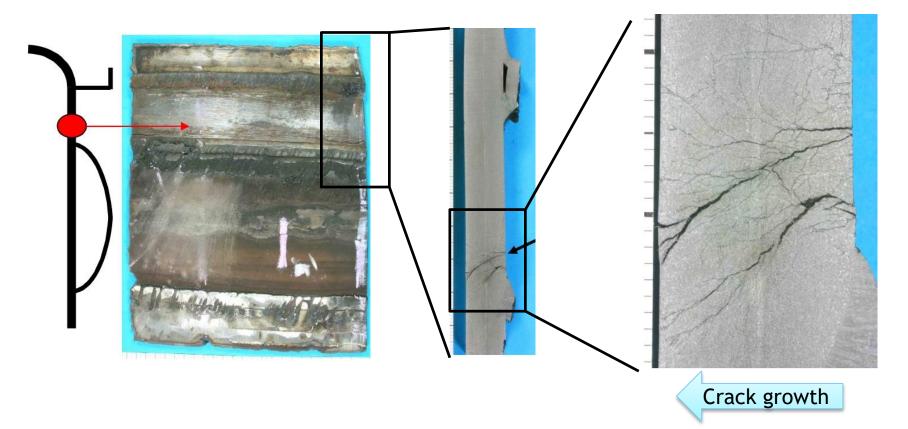
Challenges:

- LTE gives 'guestimates', Financials read hard numbers
- Connect LTE with process improvements
- Experienced people doing LTE

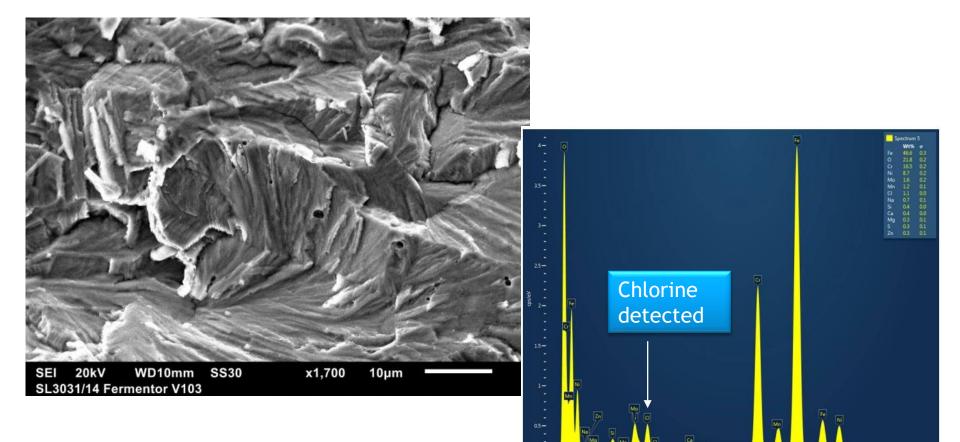
NO SURPRISES ?

A case study

Case: external pollution of reactor found



Cracks along ³/₄ of circumference.


After cleaning and penetrant testing no leaks in half-coil found.

Damage investigation: Stress Corrosion Cracking (SCC), starting from outside surface

SCC: feather shape features on fracture surface (SEM image)

Chlorine detected: chloride-SCC

Remains of adhesive tape found, with pits and cracks underneath

			1			
and the second second	Element	w/w%	Element	w/w%		
	Mg	0.4	Cr	0.02		
	Al	0.3	Mn	0.02		
	Si	0.8	Fe	0.2		
	Р	0.03	Ni	0.03		
	S	0.1	Zn	0.4		
4% chlorine	Cl	4	Sr	0.04		
	K	0.1	Sb	0.3		
detected	Ca	29	Ba	0.8		
	Ti	0.4				

Table1: Semi quantitative elemental composition of elements > F in the periodic system

Repair procedure

- Cut out ring (also laminating with FRP considered)
- Ca. 15 cm under lowest crack location; upper half-coil sacrificed.
- Ca. 15 cm above highest crack location: on existing weld head-cylinder
- Total ring height ca. 40 cm
- Weld in new ring (316L)
- Weld bevels 100% penetrant tested: validate that these are free of cracks.

For you to check tomorrow:

Do you use labels / glue / ink with chlorides?

BRIGHT SCIENCE. BRIGHTER LIVING.™