

Estimating consequences of scenarios of batch operated process in production buildings.

ir Frans Schiffelers DSM Operations & Responsible Care PS Conference Dordrecht, 17 may 2017

HEALTH • NUTRITION • MATERIALS

Why are we concerned?

- Flammable materials
- High temperature / high pressure
- Large volumes / flows
- Continuous process
- Most often outside building

- Flammable materials
- Exothermic reactions
 - High temperature / high pressure
 - Relatively small volumes
- Batch process
- Most often inside buildings

Used for:

- HAZOP and Risk classification
- Occupational health, exposure
- Occupied building assessments
- Design of control rooms
- Layout of production buildings with occupied rooms

Examples of occupied buildings

- Control rooms
- Compressor Buildings
- Warehouses
- Offices
- Canteens
- Emergency Command Centers
- Conference rooms
- Building in a building
- Weather shelters
- Cabins at charging stations

Analyzer Buildings Workshops Laboratories Classrooms Shelter-in-place Dressing rooms Portable buildings Smoke areas Scaffolding houses Sanitary blocks

Software tools for consequence analysis

Mostly designed for outdoor scenarios. Theory based on outdoor scenarios for large petrochemical sites

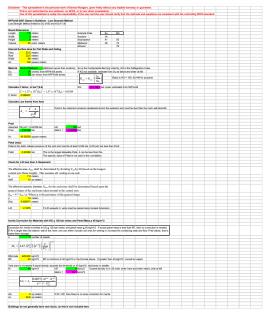
- Source strength
- Fire and explosion
- Toxic dispersion and consequences
- DNV PHAST
- TNO Effects
- ALOHA
- Baker Risk tools for building assessments
- CFD
- Etcetera

But not many tools available for scenarios taking place inside buildings

Scenarios & limits

	Outside building	Inside building		
Explosion inside vessel	 Pressure wave Flame length vented explosion 	 Pressure wave Flame length vented explosion 		
Explosion outside vessel	 Pressure wave Flash fire 	 CSTR Assessment of building integrity Fireball 		
Jet fire	Heat radiation	Heat radiation		
Flash fire	• LFL	• LFL		
Pool fire	 Heat radiation Secondary Containment 	Heat radiationSecondary Containment		
Toxic effect	Dispersion	• CSTR		

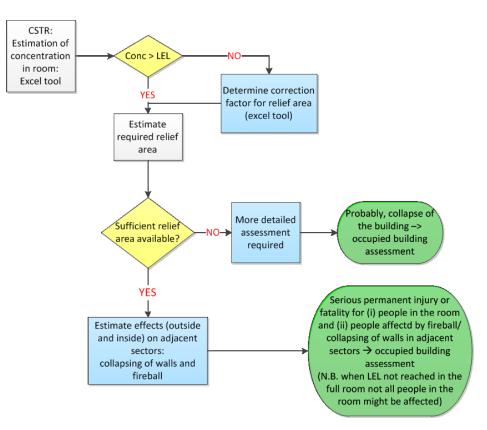
		Overpressure (inside)	Overpressure (outside)	LEL	Heat radiation	Toxic effects
Effect on people	≥C1	30 mbar	100 mbar		6.3 kW/m ² (fast escape possible)	1% lethality
	≥C2	100 mbar	300 mbar	100% LEL	12.5 kW/m²	5% lethality
Effect on building		100 -300 mbar*	100 - 300 mbar*	≥100% LEL	25-35 kW/m²	n.a.

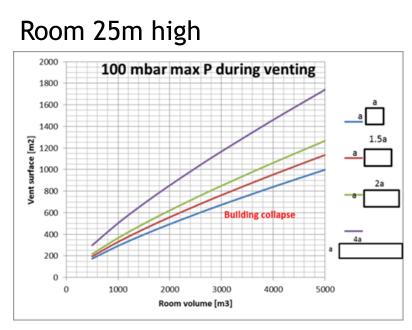

Background of calculations

- TNO: Yellow Book PGS 2
- R.J. Harris: gas explosions in buildings and heating plant
- Lees' Loss prevention in
- ProcessNet: Statuspapier Quelltermberechnung
- Umweltbundesambt: Ermittlung und Berechnung von Störfallablaufszenarien nach Maßgabe der 3. Störfallverwaltungsvorschrift
- Others
 - Abdelkarim Habib, Bernd Schalau: Pool evaporation at higher vapor pressures
- Limited information or calculations suitable for scenarios taking place inside buildings

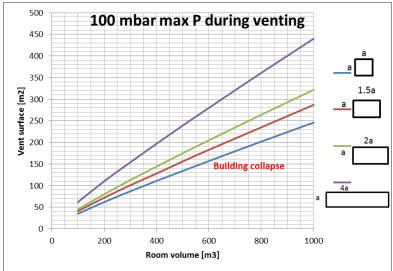
NFPA 68 2013 edition

- Standard on Explosion Protection by Deflagration Venting
- + Use for gas and vapor and dust explosion
- + Use for equipment and rooms / buildings
- + Excel sheet is available on internet / NFP
 - + NFPA 68 2012 revised 20130122
- Physical properties needed
- Rather complex to use



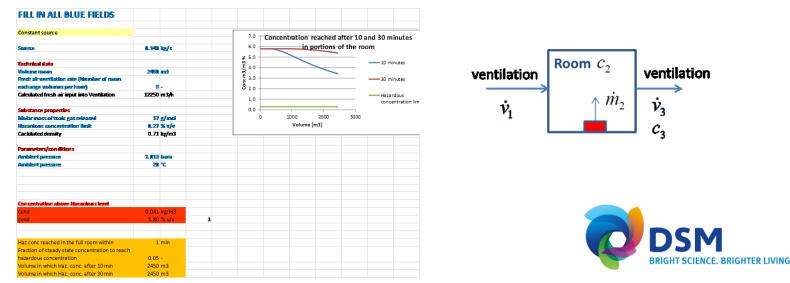

Fire and Explosion

- Vessel burst:
 - Pressure wave
 - Heat radiation / flash fire
- Leakage
 - Gas or vapor release
 - Spray of liquid content
 - Pool evaporation
 - Ignition inside the building
 - Temperature and ventilation


Decision tree for assessing the effects of vapor/gas explosion outside vessel indoor

Examples

Room 5m high



Toxic indoor

- CSTR approach: Excel Tool
 - Release of gas

Page 10

- The whole volume has the same concentration (ideally mixed)
- Constant source and one time source
- If Room conc > Hazardous concentration
 - Constance source:
 - Determination of time to reach Hazardous concentration
 - Determination of volume filled to Hazardous concentration after 10 and 30 minutes

Toxic releases inside buildings

- Also suitable for (nitrogen) asphyxiation scenarios inside buildings
- Standard ideal (CSTR) mixing inside building calculations
- Local dispersion calculations
- Probit functions for lethality

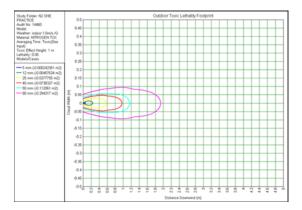
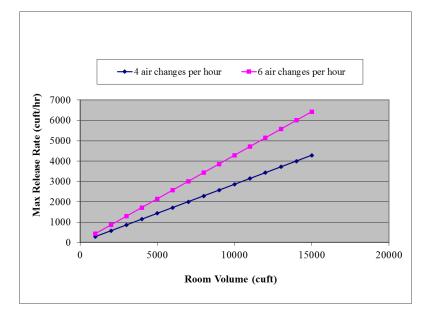



Table 8 Footprint of 5 % at 7 barg (~ 13.1% O₂). (95% of the people in the effect area are death within 10 minutes)

Data for calculations

- Building or room volume
- Design strength of main construction and separation walls
- Opening pressure of explosion panels, window panes, doors, light construction walls for explosion venting
- Physical properties of the hazardous materials
- Source strength
- Corrections for partly filled volumes

Conclusions

- Calculation methods are available in literature, but not always ready to use
 - Older literature information sometimes lead to conservative over or underestimation of the effects.
- Tools, excel sheets, graphs help speeding-up and make risk classifications more reliable and uniform
- NFPA 68 suitable for explosion scenarios inside rooms / buildings and explosion venting of buildings
- Design of apps would help supporting risk classifications

BRIGHT SCIENCE. BRIGHTER LIVING.™